Список категорий

Data Algorithms with Spark

Автор: Mahmoud Parsian
Дата выхода: 2022
Издательство: O’Reilly Media, Inc.
Количество страниц: 438
Размер файла: 12,6 МБ

  Apache Spark's speed, ease of use, sophisticated analytics, and multilanguage support makes practical knowledge of this cluster-computing framework a required skill for data engineers and data scientists. With this hands-on guide, anyone looking for an introduction to Spark will learn practical algorithms and examples using PySpark.

 In each chapter, author Mahmoud Parsian shows you how to solve a data problem with a set of Spark transformations and algorithms. You'll learn how to tackle problems involving ETL, design patterns, machine learning algorithms, data partitioning, and genomics analysis. Each detailed recipe includes PySpark algorithms using the PySpark driver and shell script.

With this book, you will:

  • Learn how to select Spark transformations for optimized solutions
  • Explore powerful transformations and reductions including reduceByKey(), combineByKey(), and mapPartitions()
  • Understand data partitioning for optimized queries
  • Build and apply a model using PySpark design patterns
  • Apply motif-finding algorithms to graph data
  • Analyze graph data by using the GraphFrames API
  • Apply PySpark algorithms to clinical and genomics data
  • Learn how to use and apply feature engineering in ML algorithms
  • Understand and use practical and pragmatic data design patterns

Исходный код:  Перейти

Если вам понравилась эта книга поделитесь ею с друзьями, тем самым вы помогаете нам развиваться и добавлять всё больше интересных и нужным вам книг!